Open
Close

Всемирный клуб пользователей кфс. Дейтерий и тритий: водород, да не тот Физические свойства воды

n . Комбинации различных атомов-изотопов дают набор молекул-изотопологов.

Изотопологи - молекулы, различающиеся только по изотопному составу атомов, из которых они состоят. Изотополог имеет в своём составе, по крайней мере, один атом определенного химического элемента, отличающийся по количеству нейтронов от остальных.

Молекула воды состоит из двух атомов водорода и одного атома кислорода.

Впервые существование изотопов водорода подтверждено в публикации 1932 г. американским физико-химиком Г. Юри .

Водород имеет два стабильных изотопа - протий (Н) - 1 H и дейтерий (D) - 2 H.

У кислорода три устойчивых изотопа: 16 O, 17 O и 18 O (табл.1).

Комбинации 5 стабильных изотопов водорода и кислорода дают набор 9 молекул-изотопологов воды (табл.2).

Молекула 1 H 2 16 O является самой лёгкой из совокупности всех изотопологов воды. Именно воду 1 H 2 16 O следует считать классической или лёгкой водой.

Лёгкая вода как моноизотопная композиция 1 H 2 16 O является предельным случаем изотопной чистоты. В естественных условиях такой чистой лёгкой воды не существует. Для получения изотополога 1 H 2 16 O ведут тонкую многостадийную очистку природных вод или синтезируют из исходных элементов 1 H 2 и 16 O 2 .

Природная вода представляет собой многокомпонентную смесь изотопологов. Содержание самого лёгкого изотополога в ней значительно превосходит концентрацию всех остальных вместе взятых. В природных водах в 1000000 молекул в среднем содержится 997284 молекул 1 H 2 16 O, 311 молекул 1 HD 16 O, 390 молекул 1 H 2 17 O, и около 2005 молекул 1 H 2 18 O.

Концентрация молекул воды, содержащих тяжёлые изотопы D, 17 O, 18 O, в природной воде колеблется в пределах, зафиксированных в основных стандартах изотопного состава гидросферы SMOW и SLAP (табл.3). Весовые количества изотопологов в природной воде рассчитаны на основании данных прямого определения их содержания методом молекулярной спектроскопии.

Таблица 3. Рассчитанные весовые количества изотопологов в природной воде, соответствующие международным стандартам SMOW (средняя молекулярная масса = 18,01528873) и SLAP (средняя молекулярная масса = 18,01491202), .
Изотополог воды Молекулярная масса Содержание, г/кг
SMOW SLAP
1 H 2 16 O 18,01056470 997,032536356 997,317982662
1 HD 16 O 19,01684144 0,328000097 0,187668379
D 2 16 O 20,02311819 0,000026900 0,000008804
1 H 2 17 O 19,01478127 0,411509070 0,388988825
1 HD 17 O 20,02105801 0,000134998 0,000072993
D 2 17 O 21,02733476 0,000000011 0,000000003
1 H 2 18 O 20,01481037 2,227063738 2,104884332
1 HD 18 O 21,02108711 0,000728769 0,000393984
D 2 18 O 22,02736386 0,000000059 0,000000018

Как видно из таблицы 3, в природной воде весовая концентрация тяжёлых изотопологов может достигать 2,97 г/кг, что является значимой величиной, сопоставимой, например, с содержанием минеральных солей.

Природная вода, близкая по содержанию изотополога 1 H 2 16 O к стандарту SLAP, а также специально очищенная с существенно увеличенной долей этого изотополога по сравнению со стандартом SLAP, определяется как особо чистая лёгкая вода (менее строгое определение, которое применимо в реальной жизни).

В лёгкой воде доля самого лёгкого изотополога составляет (мол.%):

99.76 < 1 H 2 16 O ≤ 100.

Если из воды, отвечающей стандарту SMOW, удалить все тяжёлые молекулы, массовое содержание которых составляет 2,97 г/кг и заменить их на 1 H 2 16 O, то масса 1 л такой лёгкой и изотопно чистой воды уменьшится на 250 мг. Таким образом, параметры лёгкой воды, в первую очередь, её «лёгкость» и изотопный состав поддаются измерению с помощью таких методов, как масс-спектрометрия , гравиметрия , лазерная абсорбционная спектроскопия , ЯМР .

Международные стандарты на природные воды различного изотопного состава

  • Стандарт VSMOW (Vienna Standard Mean Ocean Water) определяет изотопный состав глубинной воды Мирового океана.
  • Стандарт SLAP (Standard Light Antarctic Precipitation) определяет изотопный состав природной воды из Антарктики.

По международному стандарту VSMOW абсолютное содержание дейтерия и кислорода-18 в океанической воде составляет: D VSMOW / 1 H VSMOW=(155,76±0,05)⋅10 −6 , или 155,76 ppm 18 O VSMOW/ 16 O VSMOW =(2005,20±0,45)⋅10 −6 , или 2005 ppm. Для стандарта SLAP концентрации в воде составляют : дейтерия D/H=89⋅10 −6 или 89 ppm, кислорода-18 18 O/ 16 O=1894⋅10 −6 или 1894 ppm.

Стандарт SLAP характеризует самую лёгкую природную воду на Земле. Вода в различных точках земного шара неодинакова по своей лёгкости.

Физические свойства изотопологов воды

Изотопологи отличаются друг от друга по физическим, химическим и биологическим свойствам (табл.4).

Равновесное давление паров у изотопологов воды различается, и весьма существенно. Чем меньше масса молекулы воды, тем выше давление пара, а это означает, что пар, равновесный с водой, всегда обогащён лёгкими изотопами кислорода и водорода. Относительно малой массы элементов разница масс изотопов велика, поэтому они способны сильно фракционировать в природных процессах: D/H → 100 %, 18 O/ 16 O →12,5 %. Изотопы водорода и кислорода наиболее эффективно фракционируют в процессах испарения-конденсации и кристаллизации воды.

Результаты экспериментальных исследований свидетельствуют о различии физико-химических свойств легкой воды и деионизированной воды природного изотопного состава .

Тяжёлые изотопологи в природной воде являются примесями по отношению к 1 H 2 16 O, которые по некоторым исследованиям можно рассматривать как дефекты структуры .

Устранение гетерогенности воды по изотопному составу приводит к увеличению её гомогенности. Лёгкая вода является более однородной жидкостью. Тяжелоизотопные молекулы, содержащиеся в воде в природных концентрациях, практически не оказывают заметного влияния на неживые системы. В наибольшей степени эффекты лёгкой воды проявляются на биологических объектах, для которых характерны каскадные реакции.

Биологические свойства тяжелой и лёгкой воды

Впервые ингибирующие (тормозящие) рост семян свойства тяжёлой воды были открыты в 1934 году Гилбертом Льюисом.

Культивирование клеток на тяжелой воде резко ускоряет процесс старения и приводит к гибели культуры.

В экспериментах на млекопитающих (мышах), которых поили утяжелённой водой (3% тяжелой воды) было показано, что негативные эффекты нарастают от поколения к поколению, в том числе снижалась активность самцов и способность к лактации у самок, снижался вес новорождённых и ухудшалось состояние шерсти. Третье поколение животных, пивших утяжелённую воду, получить не удалось.
Напротив, поение животных водой с пониженным содержанием дейтерия вызывало повышенную половую активность у самцов уже в первом поколении. У самок наблюдалось многоплодие при большем приросте веса потомства.

Реакция биосистем при воздействии на них воды может изменяться в зависимости от количественных и качественных изменений её изотопного состава. В ходе эволюции живых организмов произошёл отбор биохимических процессов с настройкой их только на один изотоп, как правило, лёгкий . В организме человека происходит «фракционирование изотопов, сопровождающееся удалением тяжёлых стабильных изотопов водорода и кислорода воды» . Применение воды с повышенной концентрацией тяжёлых изотопов, в частности, дейтерия, вызывает выраженные токсические эффекты на уровне организма . В то же время на разных объектах зарегистрирована положительная биологическая активность вод с пониженным, относительно природного, содержанием тяжелых изотопологов, в частности дейтерия и кислорода 18 . Проводимые в ГНЦ РФ «Институт медико-биологических проблем» РАН систематические исследования по созданию среды обитания космонавтов с оптимальным изотопным составом биогенных химических элементов показали, что вода с пониженным по сравнению с природным содержанием тяжелоизотопных молекул является необходимым компонентом системы жизнеобеспечения космонавтов во время длительных полётов

В качестве универсальной среды, в которой идут все биологические реакции, лёгкая вода увеличивает скорость этих реакций по сравнению с водой природного изотопного состава. Этот эффект известен под названием кинетический изотопный эффект растворителя .

Транспортные свойства легкой воды доказаны при изучении влияния тяжелых изотопологов в составе природной воды на динамику выведения красителя метиленового синего из обонятельной системы шпорцевых лягушек .

Наиболее сильное влияние очистка воды от тяжёлых изотопологов оказывает на энергетический аппарат живой клетки. Дыхательную цепь митохондрий отличают каскадные реакции. Тяжёлые изотопологи замедляют скорость реакций дыхательной цепи. На примере реакции генерации перекиси водорода митохондриями с янтарной кислотой в качестве субстрата экспериментально доказан общий ингибирующий эффект тяжёлых изотопологов воды. Снижение их содержания в воде до уровня ниже природных концентраций деингибирует и достоверно ускоряет исследованную реакцию .

Лёгкая вода проявляет противоопухолевую активность, что показано в работах учёных, проводимых в исследовательских центрах разных стран . По данным Г.Шомлаи, результаты клинических испытаний, проведённых в 1994-2001 гг. в Венгрии, показали, что уровень выживаемости больных, употреблявших лёгкую воду в сочетании с традиционными методами лечения или после них выше, чем у больных, использовавших только химио- или лучевую терапию .

Токсикопротекторные свойства легкой воды подтверждены экспериментальными исследованиями , из которых следует, что легкая вода, очищенная от тяжелых изотопологов, за счет своих транспортных свойств эффективно выводит токсины и продукты метаболизма из организма.

Также отмечено влияние легкой воды на пациентов с сахарным диабетом II типа. Результаты открытого предклинического исследования продолжительностью 90 дней показали, что под действием легкой воды у добровольцев снизился повышенный уровень глюкозы натощак и снизилась инсулинорезистентность .

Есть и мнение о недоказанности существования особых биологических свойств лёгкой воды .

Уровень депрессии среди населения США в значительной степени коррелирует с географическим распределением дейтерия, а причино-следственную связь депрессии и ангедонии с содержанием дейтерия в питьевой воде подтвердила серия независимых экспериментов на животных. Было показано, что замена обычной питьевой воды на воду, обедненную по дейтерию, противодействует депрессии сопоставимо с результатами приема антидепрессантов. Питьевая вода, обедненная по дейтерию, может стать средством, лежащим в основе новой стратегии профилактики депрессии.

См. также

Примечания

  1. Кульский Л. А., Даль В. В., Ленчина Л. Вода знакомая и загадочная.- Киев: «Радянська школа», 1982.- 120 с.
  2. Петрянов-Соколов И. В. Самое необычное вещество в мире.// Химия и жизнь. 2007. № 1. с.26.
  3. Harold C. Urey, F. G. Brickwedde, and G. M. Murphy. A Hydrogen Isotope of Mass 2 // Columbia University and the Bureau of Standards.
  4. Rothman et al., J. Quant. Spectrosc. Radiat. Transfer, 1998, 60, 665. Rothman et al., J. Quant. Spectrosc. Radiat. Transfer, 2003, 82, p.9.
  5. Патент RU 2295493. «Способ и установка для производства лёгкой воды». Соловьев С. П.
  6. Lis G., Wassenaar L. I., Hendry M. J. High-Precision Laser Spectroscopy D/H and 18 O/ 16 O Measurements of Microliter Natural Water Samples.// Anal. Chem. 2008. V. 80 (1). P. 287-293
  7. Ферронский В. И., Поляков В. А. Изотопия гидросферы. М.: Наука, 1983 г.
  8. Craig, H. Standard for Reporting Concentrations of Deuterium and Oxygen-18 in Natural Waters. // Science. 1961. V. 133. PP. 1833−1834.
  9. Hagemann R., Niff G., Roth E. Absolute isotopic scale for deuterium analysis of natural waters. Absolute D/H ratio for SMOW. // Tellus. 1970. V.22. N6. PP.712-715.
  10. De Wit J.C., van der Straaten C.M.; Mook W.G. Determination of the Absolute Hydrogen Isotopic Ratio of VSMOW and SLAP. // Geostandards Newsletter. 1980. V. 4. N. 1. PP. 33−36.
  11. V.V. Goncharuk, V.B. Lapshin, T.N. Burdeinaya, T.V. Pleteneva, A.S. Chernopyatko et al. Physicochemical Properties and Biological Activity of the Water Depleted of Heavy Isotopes // 2011, published in Khimiya i Tekhnologiya Vody, 2011, Vol. 33, No. 1, pp. 15-25. Journal of Water Chemistry and Technology, 2011, Vol. 33, No. 1, pp. 8-13.
  12. Смирнов А. Н., Лапшин В. Б., Балышев А. В., Лебедев И. М., Гончарук В. В., Сыроешкин А. В. Структура воды: гигантские гетерофазные кластеры воды. // Химия и технология воды. - 2005.- № 2. - C. 11-37; Смирнов А. Н., Сыроешкин А. В. Супранадмолекулярные комплексы воды. // Рос. хим. ж. - 2004.- Т.48 - № 2. - C. 125-135
  13. Lewis, G. N. ,Biology of heavy water. Science, 79, 151 (1934)
  14. Торопцев И.В. и др. Биологическая роль тяжелой воды в живых организмах. Вопросы радиобиологии и гематологии, Издательство Томского университета, 1966г.
  15. Оригинал публикации Торопцев И.В. и др. Биологическая роль тяжелой воды в живых организмах. Вопросы радиобиологии и гематологии, Издательство Томского университета, 1966г.
  16. Синяк Ю. Е.., Григорьев А. И. Оптимальный изотопный состав биогенных химических элементов на борту пилотируемых космических аппаратов. // Авиакосмическая и экологическая медицина. 1996. Т. 30, № 4, С. 26.
  17. Синяк Ю. Е., Скуратов В. М., Гайдадымов В. Б., Иванова С. М., Покровский Б. Г. Григорьев А. И. Исследование фракционирования стабильных изотопов водорода и кислорода на международной космической станции. // Авиакосмическая и экологическая медицина. 2005. Т. 39, № 6, С. 43.
n . Комбинации различных атомов-изотопов дают набор молекул-изотопологов.

Изотопологи - молекулы, различающиеся только по изотопному составу атомов, из которых они состоят. Изотополог имеет в своём составе, по крайней мере, один атом определенного химического элемента, отличающийся по количеству нейтронов от остальных.

Молекула воды состоит из двух атомов водорода и одного атома кислорода.

Водород имеет два стабильных изотопа - протий (Н) - 1 H и дейтерий (D) - 2 H.

У кислорода три устойчивых изотопа: 16 O, 17 O и 18 O (табл.1).

Таблица 1. Изотопы воды

Комбинации 5 стабильных изотопов водорода и кислорода дают набор 9 молекул-изотопологов воды (табл.2).

Таблица 2. Изотопологи воды

Молекула 1 H 2 16 O является самой лёгкой из совокупности всех изотопологов воды. Именно воду 1 H 2 16 O следует считать классической или лёгкой водой.

Лёгкая вода как моноизотопная композиция 1 H 2 16 O является предельным случаем изотопной чистоты. В естественных условиях такой чистой лёгкой воды не существует. Для получения изотополога 1 H 2 16 O ведут тонкую многостадийную очистку природных вод или синтезируют из исходных элементов 1 H 2 и 16 O 2 . Природная вода представляет собой многокомпонентную смесь изотопологов. Содержание самого лёгкого изотополога в ней значительно превосходит концентрацию всех остальных вместе взятых. В природных водах в 1000000 молекул в среднем содержится 997284 молекул 1 H 2 16 O, 311 молекул 1 HD 16 O, 390 молекул 1 H 2 17 O, и около 2005 молекул 1 H 2 18 O. Концентрация молекул воды, содержащих тяжёлые изотопы D, 17 O, 18 O, в природной воде колеблется в пределах, зафиксированных в основных стандартах изотопного состава гидросферы SMOW и SLAP (табл.3). Весовые количества изотопологов в природной воде рассчитаны на основании данных прямого определения их содержания методом молекулярной спектроскопии.

Таблица 3. Рассчитанные весовые количества изотопологов в природной воде, соответствующие международным стандартам SMOW (средняя молекулярная масса = 18,01528873) и SLAP (средняя молекулярная масса = 18,01491202), .

Изотополог воды Молекулярная масса Содержание, г/кг
SMOW SLAP
1 H 2 16 O 18,01056470 997,032536356 997,317982662
1 HD 16 O 19,01684144 0,328000097 0,187668379
D 2 16 O 20,02311819 0,000026900 0,000008804
1 H 2 17 O 19,01478127 0,411509070 0,388988825
1 HD 17 O 20,02105801 0,000134998 0,000072993
D 2 17 O 21,02733476 0,000000011 0,000000003
1 H 2 18 O 20,01481037 2,227063738 2,104884332
1 HD 18 O 21,02108711 0,000728769 0,000393984
D 2 18 O 22,02736386 0,000000059 0,000000018

Как видно из таблицы 3, в природной воде весовая концентрация тяжёлых изотопологов может достигать 2,97 г/кг, что является значимой величиной, сопоставимой, например, с содержанием минеральных солей.

Природная вода, близкая по содержанию изотополога 1 H 2 16 O к стандарту SLAP, а также специально очищенная с существенно увеличенной долей этого изотополога по сравнению со стандартом SLAP, определяется как особо чистая лёгкая вода (менее строгое определение, которое применимо в реальной жизни).

В лёгкой воде доля самого лёгкого изотополога составляет (мол.%): 99.76 < 1 H 2 16 O ≤ 100.

Если из воды, отвечающей стандарту SMOW, удалить все тяжёлые молекулы, массовое содержание которых составляет 2,97 г/кг и заменить их на 1 H 2 16 O, то масса 1 л такой лёгкой и изотопно чистой воды уменьшится на 250 мг. Таким образом, параметры лёгкой воды, в первую очередь, её «лёгкость» и изотопный состав поддаются измерению с помощью таких методов, как масс-спектрометрия , гравиметрия , лазерная абсорбционная спектроскопия , ЯМР .

Международные стандарты на природные воды различного изотопного состава

  • Стандарт VSMOW (Vienna Standard Mean Ocean Water) определяет изотопный состав глубинной воды Мирового океана.
  • Стандарт SLAP (Standard Light Antarctic Precipitation) определяет изотопный состав природной воды из Антарктики.

По международному стандарту VSMOW абсолютное содержание дейтерия и кислорода-18 в океанической воде составляет: D VSMOW / 1 H VSMOW=(155,76±0,05)·10 −6 , или 155,76 ppm 18 O VSMOW/ 16 O VSMOW =(2005,20±0,45)·10 −6 , или 2005 ppm. Для стандарта SLAP концентрации в воде составляют : дейтерия D/H=89·10 −6 или 89 ppm, кислорода-18 18 O/ 16 O=1894·10 −6 или 1894 ppm.

Стандарт SLAP характеризует самую лёгкую природную воду на Земле. Вода в различных точках земного шара неодинакова по своей лёгкости.

Свойства и эффекты лёгкой воды

Изотопологи отличаются друг от друга по физическим, химическим и биологическим свойствам (табл.4).

Таблица 4. Изменение физических свойств воды при изотопном замещении

Равновесное давление паров у изотопологов воды различается, и весьма существенно. Чем меньше масса молекулы воды, тем выше давление пара, а это означает, что пар, равновесный с водой, всегда обогащён лёгкими изотопами кислорода и водорода. Относительно малой массы элементов разница масс изотопов велика, поэтому они способны сильно фракционировать в природных процессах: D/H → 100 %, 18 O/ 16 O →12,5 %. Изотопы водорода и кислорода наиболее эффективно фракционируют в процессах испарения-конденсации и кристаллизации воды.

Результаты экспериментальных исследований свидетельствуют о различии физико-химических свойств легкой воды и деионизированной воды природного изотопного состава .

Тяжёлые изотопологи в природной воде являются примесями по отношению к 1 H 2 16 O, которые по некоторым исследованиям можно рассматривать как дефекты структуры .

Устранение гетерогенности воды по изотопному составу приводит к увеличению её гомогенности. Лёгкая вода является более однородной жидкостью. Тяжелоизотопные молекулы, содержащиеся в воде в природных концентрациях, практически не оказывают заметного влияния на неживые системы. В наибольшей степени эффекты лёгкой воды проявляются на биологических объектах, для которых характерны каскадные реакции.

Реакция биосистем при воздействии на них воды может изменяться в зависимости от количественных и качественных изменений её изотопного состава. В ходе эволюции живых организмов произошёл отбор биохимических процессов с настройкой их только на один изотоп, как правило, лёгкий . В организме человека происходит «фракционирование изотопов, сопровождающееся удалением тяжёлых стабильных изотопов водорода и кислорода воды» . Применение воды с повышенной концентрацией тяжёлых изотопов, в частности, дейтерия, вызывает выраженные токсические эффекты на уровне организма . В то же время на разных объектах зарегистрирована положительная биологическая активность вод с пониженным, относительно природного, содержанием тяжелых изотопологов, в частности дейтерия и кислорода 18 . Проводимые в ГНЦ РФ «Институт медико-биологических проблем» РАН систематические исследования по созданию среды обитания космонавтов с оптимальным изотопным составом биогенных химических элементов показали, что вода с пониженным по сравнению с природным содержанием тяжелоизотопных молекул является необходимым компонентом системы жизнеобеспечения космонавтов во время длительных полётов

Биологические свойства

В качестве универсальной среды, в которой идут все биологические реакции, лёгкая вода увеличивает скорость этих реакций по сравнению с водой природного изотопного состава. Этот эффект известен под названием кинетический изотопный эффект растворителя .

Транспортные свойства легкой воды доказаны при изучении влияния тяжелых изотопологов в составе природной воды на динамику выведения красителя метиленового синего из обонятельной системы шпорцевых лягушек .

Наиболее сильное влияние очистка воды от тяжёлых изотопологов оказывает на энергетический аппарат живой клетки. Дыхательную цепь митохондрий отличают каскадные реакции. Тяжёлые изотопологи замедляют скорость реакций дыхательной цепи. На примере реакции генерации перекиси водорода митохондриями с янтарной кислотой в качестве субстрата экспериментально доказан общий ингибирующий эффект тяжёлых изотопологов воды. Снижение их содержания в воде до уровня ниже природных концентраций деингибирует и достоверно ускоряет исследованную реакцию .

Лёгкая вода проявляет противоопухолевую активность, что показано в работах учёных, проводимых в исследовательских центрах разных стран . По данным Г.Шомлаи, результаты клинических испытаний, проведённых в 1994-2001 гг. в Венгрии, показали, что уровень выживаемости больных, употреблявших лёгкую воду в сочетании с традиционными методами лечения или после них выше, чем у больных, использовавших только химио- или лучевую терапию .

Токсикопротекторные свойства легкой воды подтверждены экспериментальными исследованиями , из которых следует, что легкая вода, очищенная от тяжелых изотопологов, за счет своих транспортных свойств эффективно выводит токсины и продукты метаболизма из организма.

См. также

Примечания

  1. Кульский Л. А., Даль В. В., Ленчина Л. Вода знакомая и загадочная.- Киев: «Радянська школа», 1982.- 120 с.
  2. Петрянов-Соколов И. В. Самое необычное вещество в мире.// Химия и жизнь. 2007. № 1. с.26.
  3. Rothman et al., J. Quant. Spectrosc. Radiat. Transfer, 1998, 60, 665. Rothman et al., J. Quant. Spectrosc. Radiat. Transfer, 2003, 82, p.9.
  4. Патент RU 2295493. «Способ и установка для производства лёгкой воды». Соловьев С. П.
  5. Lis G., Wassenaar L. I., Hendry M. J. High-Precision Laser Spectroscopy D/H and 18 O/ 16 O Measurements of Microliter Natural Water Samples.// Anal. Chem. 2008. V. 80 (1). P. 287-293
  6. Ферронский В. И., Поляков В. А. Изотопия гидросферы. М.: Наука, 1983 г.
  7. Craig, H. Standard for Reporting Concentrations of Deuterium and Oxygen-18 in Natural Waters. // Science. 1961. V. 133. PP. 1833−1834.
  8. Hagemann R., Niff G., Roth E. Absolute isotopic scale for deuterium analysis of natural waters. Absolute D/H ratio for SMOW. // Tellus. 1970. V.22. N6. PP.712-715.
  9. De Wit J.C., van der Straaten C.M.; Mook W.G. Determination of the Absolute Hydrogen Isotopic Ratio of VSMOW and SLAP. // Geostandards Newsletter. 1980. V. 4. N. 1. PP. 33−36.
  10. V.V. Goncharuk, V.B. Lapshin, T.N. Burdeinaya, T.V. Pleteneva, A.S. Chernopyatko et al. Physicochemical Properties and Biological Activity of the Water Depleted of Heavy Isotopes // 2011, published in Khimiya i Tekhnologiya Vody, 2011, Vol. 33, No. 1, pp. 15–25. Journal of Water Chemistry and Technology, 2011, Vol. 33, No. 1, pp. 8–13.
  11. Смирнов А. Н., Лапшин В. Б., Балышев А. В., Лебедев И. М., Гончарук В. В., Сыроешкин А. В. Структура воды: гигантские гетерофазные кластеры воды. // Химия и технология воды. - 2005.- № 2. - C. 11-37; Смирнов А. Н., Сыроешкин А. В. Супранадмолекулярные комплексы воды. // Рос. хим. ж. - 2004.- Т.48 - № 2. - C. 125-135
  12. Синяк Ю. Е.., Григорьев А. И. Оптимальный изотопный состав биогенных химических элементов на борту пилотируемых космических аппаратов. // Авиакосмическая и экологическая медицина. 1996. Т. 30, № 4, С. 26.
  13. Синяк Ю. Е., Скуратов В. М., Гайдадымов В. Б., Иванова С. М., Покровский Б. Г. Григорьев А. И. Исследование фракционирования стабильных изотопов водорода и кислорода на международной космической станции. // Авиакосмическая и экологическая медицина. 2005. Т. 39, № 6, С. 43.
  14. Денько Е. И. Действие тяжёлой воды (D2O) на клетки животных, растений и микроорганизмы. // Усп. совр. биол.. 1970. Т. 70, № 4, С. 41.
  15. Лобышев В. И. Механизмы термодинамических и кинетических изотопных эффектов D2O в биологических системах Автореф. докт. диссертации. Москва, - 1987 (биофак МГУ)
  16. GLEASON J.D., FRIEDMAN I. Oats may grow better in water depleted in oxygen 18 and deuterium. NATURE 256, 305 (24 July 1975)
  17. Bild W, Năstasă V, Haulică I. In vivo and in vitro research on the biological effects of deuterium-depleted water: 1. Influence of deuterium-depleted water on cultured cell growth. // Rom J. Physiol. 2004. V.41. N 1-2. P:53-67.
  18. Sinyak Y., Grigoriev A., Gaydadimov V., Gurieva T., Levinskih M., Pokrovskii B. Deuterium-free water (1H2O) in complex life-support systems of long-tern space missions. // Acta Astronautica. 2003. V. 52, P. 575.
  19. Райхардт К. «Растворители и эффекты среды в органической химии». -М.: «Мир», 1991. - 763 с.
  20. Т.Н. Бурдейная, В.А. Поплинская, А.С. Чернопятко, Э.Н. Григорян. Влияние легкой воды на динамику выведения красителя из обонятельной системы личинок Xenopus laevis // Вода: химия и экология 2011.-№9 - C. 86-91
  21. Pomytkin I.A., Kolesova O.E. //Bulletin of Experimental Biology and Medicine. 2006. V.142. N 5.
  22. Gyöngyi Z, Somlyai G. Deuterium depletion can decrease the expression of C-myc Ha-ras and p53 gene in carcinogen-treated mice. // In Vivo. 2000. V.14. N.3. P. 437.

Важнейшие для здоровья параметры питьевой воды

Изотопный состав питьевой воды

Данная тема в настоящее время в России не популярна, но крайне важна в силу своих перспектив.

Что представляет собой вода - H 2 O - с точки зрения образующих ее элементов?

99,727% приходится на долю молекул воды, состоящих из протия и кислорода-16, т.е. на долю молекул 1 H 2 16 O.

Более тяжелая вода представлена в пропорциях: H 2 18 O - 73.5%; 1 H 2 17 O - 14,7%; 1 HD 16 O - 11,5%. В воде пресноводных источников содержание тяжеловодородной воды 1 HD 16 O составляет около 330 мг/литр, а тяжелокислородной воды 1 H 2 18 O - около 2 грамм/литр. Такие концентрации сопоставимы с содержанием солей и даже превышают их предельно допустимые нормы . Содержание дейтерия изменяется от 90 ppm в воде из антарктического льда до 180 ppm в водоемах Сахары.

Научно доказано, что природная вода с пониженным содержанием тяжелых изотопов водорода и кислорода обладает стимулирующими и лечебными свойствами . Т.е. живая клетка реагирует даже на небольшое изменение содержания тяжелых изотопов в воде.

Дейтерий - универсальный ингибитор жизни. Он всегда присутствует в любой воде. Его концентрация определяет качество питьевой воды.

Если рассматривать дейтерий как микроэлемент, входящий в состав не только воды, но важнейших органических соединений, то по значимости его можно поставить на одно из первых мест, если не на первое место. Среди других элементов в организме человека D оказывается сразу за натрием. Его содержание в плазме крови в 4 раза больше, чем калия, в 6 раз больше, чем кальция, в 10 раз больше, чем магния и намного больше содержания таких важнейших микроэлементов, как фтор, железо, йод, медь, марганец и кобальт. Про кальций знают все. Кто обращает внимание на дейтерий?

В домашних условиях полностью очистить воду от дейтерия невозможно, да это и не нужно. Для получения оздоровительного эффекта важно лишь снизить его концентрацию. Из доступных вариантов известен метод приготовления протиевой воды. Суть метода в замораживании отфильтрованной воды в холодильнике. Когда на поверхности воды и стенках емкости появится первый лед, воду надо перелить в другую емкость, а лед выбросить, т.к. он будет содежать повышенную концентрацию дейтерия. Причина этого в том, что тяжелая вода замерзает при +3,8°C. При казалось бы очевидной надежности такого метода, он не дает существенного снижения содержания тяжелой воды, т.к. в действительности первой замерзает не тяжелая вода, а вода, находящаяся ближе всего к холодным стенкам емкости. Однако, если активно перемешивать воду в процессе ее охлаждения, то образующиеся в ней кристаллы, действительно содержат повышенную концентрацию тяжелой воды.

Снижение концентрации тяжелой воды даже на 2-3% резко увеличивает биостимулирующие свойства воды.

Бытовые приборы для определения концентрации дейтерия не известны.

Бытовые приборы для приготовления легкой воды неизвестны.

Но один из революционных скачков в качестве подготовки питьевой воды в ближайшие годы будет сделан именно в этом направлении.

Глоссарий

Изотоп - атом одного и того же химического элемента, ядро которого имеет то же число протонов, что и основной элемент, но разное количество нейтронов. В силу этого изотопы имеют различные атомные массы.

Протий - стабильный изотоп водорода с массовым числом 1. Ядро атома протия состоит из одного протона.

Дейтерий - D, 2 Н, тяжёлый водород, стабильный изотоп водорода с массовым числом 2. Большое различие в массах D и 1 Н обусловливает существенную разницу в их свойствах (например, скорости некоторых химических реакций различаются для веществ, содержащих D и 1 Н, в 5-10 раз).

Тритий - наиболее тяжелый изотоп водорода с массовым числом 3.

ppm - parts per million - количество частиц на миллион.

Особого внимания заслуживают два показателя: задержка метастазирования и потеря веса животных за время экспериментов. Ярко выраженное стимулирующее действие «легкой» воды на иммунную систему животных привело к задержке развития метастазов на 40 % по сравнению с контрольной группой, а потеря массы у животных, которые пили «легкую» воду, к концу опыта была в два раза меньше.

При воздействии на подопытных животных γ-облучением в дозе LD50 обнаружено, что выживаемость животных, употреблявших в течение 15 дней перед облучением «легкую» воду (30 ppm), в 2,5 раза выше, чем в контрольной группе (доза облучения 850 R), что указывает на радиопротекторные свойства «легкой» воды. При этом у выживших мышей опытной группы количество лейкоцитов и эритроцитов в крови осталось в пределах нормы, в то время как в контрольной группе оно значительно сократилось.

Было отмечено также четкое положительное влияние воды на показатели насыщения тканей печени кислородом: при этом увеличение величины рО2составляло 15 %, то есть дыхание клеток увеличивалось в 1,3 раза. О полезном действии реликтовой воды на здоровье мышей свидетельствовала их повышенная резистентность и увеличение веса по сравнению с контролем. Это значит, что употребление «легкой» воды для жителей больших городов в условиях повышенного фона радиации обосновано.

«Легкая» вода увеличивает скорость метаболических реакций, например, при старении, метаболическом синдроме, диабете и т.п. . Кроме этого, согласно данным предварительных исследований, в пробах «легкой» воды сперматозоиды несколько дольше сохраняли свою функциональную активность, которая повышается по мере снижения содержания дейтерия в воде. Если принять во внимание общеизвестный факт о том, что воспроизводство жизни связано с потенциалом жизнедеятельности половых клеток, то станет ясно значение реликтовой воды для будущих поколений. Данные факты способствуют разработке промышленных установок для извлечения тяжелых изотопов из воды.

«Легкая» вода увеличивает скорость метаболических реакций, например, при старении, метаболическом синдроме и т.п. Согласно данным предварительных исследований, в пробах «легкой» воды сперматозоиды несколько дольше сохраняли свою функциональную активность

Установки разделения тяжелых изотопов

В настоящее время существует несколько способов извлечения тяжелых изотопов из воды: изотопный обмен в присутствии палладия и платины, электролиз воды в сочетании с каталитическим изотопным обменом между водой и водородом, колоночная ректификация, вакуумное замораживание холодного пара с последующим оттаиванием и др. . В способе получения обедненной дейтерием питьевой воды за счет замораживания-оттаивания льда получение льда осуществляют замораживанием пара, образующегося из исходной воды при температуре, не превышающей +10 °C, а в процессе оттаивания льда на него дополнительно воздействуют ультрафиолетовым и инфракрасным излучениями и насыщают талую воду газом или смесью газов.

При смешивании «легкой» (Н2О) и тяжелой (D2O + T2O) воды происходит изотопный обмен: Н2О + D2O = 2 НDO; H2O + T2O = 2 НТО. Поэтому дейтерий и тритий в обычной воде находятся в форме HDO и НТО. При этом температура замерзания для D2O составляет +3,8 °С, а для Т2О +9 °С, HDO и НТО замерзают соответственно при +1,9 °С и при +4,5 °С. Установлено, что при температуре в пределах от 0 до +1,9 °С молекулы воды с дейтерием и тритием, в отличие от «легкой» (протиевой) воды, находятся в метастабильно-твердом неактивном состоянии.

Это свойство лежит в основе фракционного разделения «легкой» и тяжелой воды путем создания разряжения воздуха над поверхностью воды при этой температуре. «Легкая» вода интенсивно испаряется, а затем улавливается при помощи морозильного устройства, превращаясь в лед. «Тяжелая» же вода, находясь в неактивном твердом состоянии и обладая значительно меньшим парциальным давлением, остается в испарительной емкости исходной воды вместе с растворенными в воде солями и примесями.

На этом принципе работает сконструированная Г.Д. Бердышевым и И.Н. Варнавским совместно с Институтом экспериментальной патологии, онкологии и радиобиологии имени Р. Кавецкого РАН Украины промышленная установка ВИН-4 «Надiя» по производству «легкой» воды с пониженным на 30-35 % содержанием дейтерия и трития (рис. 2).

Установка состоит из корпуса 1, в котором установлена испарительная емкость 2 для исходной воды с устройствами нагрева 3 и охлаждения воды 4. Здесь же имеется вентиль 5 для подачи воды в испаритель и вентиль 6 для слива отработанного остатка, обогащенного тяжелыми изотопами водорода. В корпусе также расположено устройство 7 для конденсации и замораживания холодного пара в виде набора тонкостенных трубчатых элементов, которые соединены с насосом для прокачивания через них хладагента. Устройство 7 совместно с источниками ультрафиолетового 8 и инфракрасного 9 излучений размещено над емкостью 10 для сбора талой воды. Внутренняя полость корпуса 1 соединена патрубком 11 с вакуумным насосом - источником разряжения воздуха. Кроме того, корпус 1 снабжен устройством 12 для подачи в его внутреннюю полость установки очищенного воздуха или смеси газов. Дополнительно установка ВИН-4 оборудована системой терморегулирования в полости испарительной емкости 2 для контроля заданной температуры процесса испарения исходной обрабатываемой воды. В корпусе имеются иллюминаторы 13 и 14 для наблюдения за процессами испарения, замораживания холодного пара и таяния льда. Емкость сбора талой воды 10 снабжена вентилями 15 для слива талой воды и патрубком 16 для соединения с блоком формирования структуры и свойств талой воды 17. Блок 17 включает внутреннюю коническую емкость 18 с минералами. На выходе емкости 19 установлен адсорбционный фильтр 20 и сливной вентиль 21.

Установлено, что при температуре в пределах от 0 до +1,9 °С молекулы воды с дейтерием и тритием, в отличие от «легкой» воды, находятся в метастабильно-твердом неактивном состоянии

Установка работает следующим образом. Из водопровода испарительную емкость 2 наполняют водой и через устройство 4 прокачивают хладагент. При достижении заданной температуры, не превышающей +10 °С, процесс охлаждения воды прекращают. Затем герметизируют корпус 1 и через патрубок 11 начинают откачивать воздух, создавая разряжение во внутреннем объеме корпуса установки. Создание разряжения сопровождается сначала интенсивным выделением из всего объема исходной воды растворенных в ней газов и их удаление, а затем интенсивным парообразованием вплоть до кипения воды, за которым наблюдают через иллюминаторы 13 и 14. Образующийся холодный пар конденсируется и намерзает на поверхности трубчатых элементов морозильника 7. Когда толщина льда достигает заранее заданной величины, процесс испарения прекращают. Вакуумный насос выключают, включают источники ультрафиолетового 8 и инфракрасного 9 излучений, а через устройство 12 вводят в полость корпуса 1 очищенный воздух или смесь газов; затем доводят давление в корпусе 1 до уровня или выше атмосферного. Остаток воды емкости 2, обогащенный тяжелыми изотопами, через вентиль 6 сливают в отдельные емкости или сливают в накопитель. По мере облучения и таяния льда талая вода поступает в емкость 10, затем в блок 17 формирования структуры и свойств талой воды. Проходя через минералы внутренней 18 и наружной 19 конических емкостей и далее через фильтр 20, талая вода завершает свой путь, приобретая целебные биологически активные свойства.

Подобную установку по получению биологически активной питьевой воды с пониженным содержанием дейтерия путем электролиза сконструировали в 2000 году российские ученые Ю.Е. Синяк, В.Б. Гайдадымов и А.И. Григорьев из Института медико-биологических проблем (рис. 3). Установка содержит емкость 1 с конденсатом атмосферной влаги или дистиллятом, которая соединена с анодной камерой 2 электролизера с ионообменным электролитом. Электролизер содержит пористые электроды (анод 2 и катод 3) из титана, покрытые платиной, преобразователь электролизных газов в воду, конденсатор 10 и сборник «легкой» воды. Кроме того, устройство дополнительно снабжено осушителем кислорода 4, реактором изотопного D2/H2O обмена 5, внешние боковые стенки которых образованы из ионообменных мембран, и кондиционером для воды 11. Внешние стенки реактора 5 и осушителя 4 образованы из ионообменных мембран 6, 8; осушитель кислорода содержит ионообменный катионит, а кондиционер для воды 11, в свою очередь, образован из фильтра со смешанными слоями ионообменных материалов - адсорбента и минерализатора, содержащего гранулированные кальций-магний карбонатные материалы.

Конденсат атмосферной влаги или дистиллят поступает в анодную камеру электролизера с твердым электролитом, где осуществляется процесс электролиза при температуре 60-80 °C. Образующиеся в результате электролиза обедненные дейтерием газообразные водород и кислород с парами воды подают в осушитель кислорода 4, где происходит сушка за счет сорбции паров воды ионообменным наполнителем (катионитом) и прохождения через ионообменные мембраны 6. Затем высушенный электролизный водород подается в каталитический реактор изотопного обмена 5, где он подвергается изотопному D2/H2O обмену с парами воды и водородом на катализаторе, состоящим из активированного угля с добавками 4-10 % фторопласта и 2-4 °% палладия или платины. После изотопного D2/H2O обмена водород осушают от паров воды (D2O), которые сорбируются и удаляются через ионообменники реактора 8, размещенные на его внешних боковых стенках. Осушенные газы поступают в преобразователь электролизных газов и в каталитическую горелку 9. Пламя факела направляют в конденсатор 10, охлаждаемый в протоке водопроводной водой, где пары воды конденсируются и поступают в кондиционер 11 для доочистки на сорбционном фильтре. Затем вода поступает в сборник воды, обедненной дейтерием 12. Охлаждение устройства и работа ионообменных мембран по осушке электролизных газов от паров воды осуществляется вентилятором 7. Окончательную доочистку воды и последующую ее минерализацию проводят кальций-магнийсодержащими карбонатными минералами и доломитом. Производительность установки по «легкой» воде составляет 50 мл воды в час.

При вакуумном замораживании-оттаивании получают микроминерализованную питьевую воду со сниженным содержанием дейтерия на 10-35 % и с упорядоченной льдоподобной структурой, характерной талой воде

При электролизном процессе у воды с пониженным на 60 % и выше содержанием дейтерия сохраняются негативные свойства дистиллированной воды (отсутствие минерализации, повышенное содержание растворенных газов, неупорядоченная молекулярная структура воды). Она является исходным материалом для получения питьевой воды космонавтов. Преимуществом электролизного процесса является максимально возможное удаление дейтерия (до 90 °%).

При вакуумном замораживании-оттаивании получают микроминерализованную питьевую воду со сниженным содержанием дейтерия на 10-35 % и с упорядоченной льдоподобной структурой, характерной талой воде. Поэтому предпочтение отдается этому способу получения «легкой» воды.

Разработанные в последние годы комбинированные методы изотопного обмена и ректификации позволяют получать «легкую» воду высокой изотопной чистоты. Первая в мире ректификационная установка по изотопной очистке воды была спроектирована в 1975 году швейцарской фирмой Sulzer и пущена в эксплуатацию на реакторе HFR ILL. В 1987 году аналогичная, но гораздо более мощная установка была создана в Канаде для канадских АЭС.

В конце 1990-х годах в Петербургском институте ядерной физики имени Б.П. Константинова была создана первая отечественная ректификационная колонна по изотопному разделению воды. Высота колонны - 10 м, диаметр - 80 мм. В основу этой установки заложен комбинированный метод изотопного обмена в системе «пары воды-водород» и низкотемпературной ректификации изотопов водорода.

В ходе реакции каталитического изотопного обмена (КОИ) между парами воды и дейтерием при температуре 200 °С происходит извлечение протия и трития из «тяжелой» воды и их последующий перевод в газообразную фазу:

DOT + D2 = DT + D2O,

HDO + D2 = DH + D2O.

Степень извлечения трития из «тяжелой» воды определяется константой равновесия и при трехступенчатой очистке составляет не более 30 °%. Очищенная от протия и трития «тяжелая» вода возвращается в реактор. Смесь изотопов водорода D2, DT, HD после очистки от примесей и охлаждения до температуры 25 K подается в низкотемпературную колонну. За счет процессов массообмена между газообразной и жидкой фазой изотопов водорода происходит концентрирование трития в нижней, а протия - в верхней части колонны. Обедненный по протию и тритию поток дейтерия в виде D2O возвращается в блок КИО. Из верхней части низкотемпературной колонны происходит отбор концентрата протия в виде «легкой» воды, а из нижней - концентрат трития в виде тритиевой воды.

Ректификация воды относится к массообменным процессам и осуществляется в противоточных колонных аппаратах с контактными элементами - насадками или тарелками. В этом процессе происходит непрерывный обмен между движущимся относительно друг друга молекулами жидкой и паровой водяной фазы. При этом жидкая фаза обогащается более высококипящим компонентом, а паровая фаза - более низкокипящим дейтерием и другими тяжелыми изотопами - тритием (Т) и кислородом (18О).

В большинстве случаев ректификацию осуществляют в противоточных колонных аппаратах с различными контактными элементами

В большинстве случаев ректификацию осуществляют в противоточных колонных аппаратах с различными контактными элементами (рис. 4). Процесс массообмена происходит по всей высоте колонны между стекающей вниз флегмой и поднимающимся вверх паром. Чтобы интенсифицировать процесс массообмена, применяют насадки и тарелки, что позволяет увеличить поверхность массообмена. В случае применения насадки жидкость стекает тонкой пленкой по ее поверхности, в случае применения тарелок пар проходит через слой жидкости на поверхности тарелок.

Расчет ректификационной колонны производится по диаграмме кипения воды для заданных параметров ректификации - состава исходной воды, кубового остатка, дистиллята, производительности и рабочем давлении в колонне. Затем подбирается тип и количество тарелок, определяется скорость движения пара, диаметр колонны, коэффициенты массопередачи, высота колонны, гидравлическое сопротивление тарелок. После этого проводится расчет эксплуатационных свойств, а также экономические показатели использования ректификационной колонны. На практике для более глубокой очистки воды от тяжелых изотопов используется не одна ректификационная колонна, а батарея из десяти и более отдельных колонн (до 20).

Данный метод изотопного разделения воды имеет ряд существенных преимуществ по сравнению с существующими способами и позволяет производить очистку природной воды от дейтерия до величин порядка 20-30 ppm. Кроме того, производительность изотопной очистки воды этим методом выше других способов, что существенно снижает ее стоимость. Предполагается, что при широкомасштабном производстве «легкой» воды в будущем она станет доступной каждому человеку.

В последнее время на отечественном рынке появилась «легкая» питьевая вода «Лангвей», которая производится методом колоночной ректификации с различным остаточным содержанием дейтерия (от 125 до 50 ppm) (табл. 3).

На основании клинических испытаний, проведенных в Российском научном центре восстановительной медицины и курортологии и в Институте красоты, «легкая» питьевая вода «Лангвей» рекомендована для нормализации углеводного и липидного обмена, артериального давления, коррекции веса, улучшения работы желудочно-кишечного тракта, увеличения скорости водообмена и выведения шлаков и токсинов из организма .

Основное воздействие «легкой» воды на организм объясняется постепенным снижением содержания дейтерия в физиологических жидкостях тела за счет реакций изотопного H-D-обмена. Анализ полученных результатов может свидетельствовать о том, что очистка воды организма от «тяжелой» воды с помощью «легкой» питьевой воды позволяет улучшить работу некоторых жизненно-важных систем организма. При регулярном потреблении «легкой» воды происходит более полная очистка всего организма от «тяжелой» воды за счет реакций изотопного H-D-обмена в физиологических жидкостях, а также зафиксировано изменение изотопного состава мочи и содержание в ней кальция. Ежедневное употребление «легкой» питьевой воды позволяет естественным образом снизить содержание «тяжелой» воды в организме человека за счет реакций изотопного H-D-обмена. Этот процесс сопровождается увеличением функциональной активности клеток, органов и некоторых систем организма. При этом происходит нормализация обменных процессов, увеличиваются защитные силы и устойчивость организма к внешним неблагоприятным воздействиям.

Регулярное употребление «легкой» питьевой воды позволяет естественным образом снизить содержание «тяжелой» воды в организме человека до величины 111 ppm. Это оказывает благоприятное воздействие на обмен веществ, улучшает самочувствие, повышает работоспособность, а также способствует быстрому восстановлению организма после больших физических нагрузок.

Положительные свойства «легкой» питьевой воды подтверждены исследованиями и клиническими испытаниями. Показано, что «легкая» вода нормализует обмен веществ и артериальное давление, снижает содержание сахара в крови у больных сахарным диабетом II-го типа, очищает организм от токсинов и шлаков, способствует быстрому заживлению и восстановлению костных и мышечных тканей после травм, обладает противовоспалительным действием, усиливает действие лекарственных препаратов, способствует коррекции веса, защищает клетки от радиации, устраняет признаки посталкогольной абстиненции. «Легкая» вода также рекомендуется для быстрой и глубокой очистки организма, что необходимо при нарушениях обменных процессов, перед операцией и в послеоперационный период, а также при лечении опухолевых заболеваний.

«Легкая» вода нормализует обмен веществ и артериальное давление, снижает содержание сахара, очищает организм от токсинов и шлаков, способствует быстрому заживлению и восстановлению костных и мышечных тканей после травм, обладает противовоспалительным действием

Клинические испытания «легкой» воды с остаточным содержанием дейтерия 60-100 ppm, проведенные РНЦ восстановительной медицины и курортологии Министерства здравоохранения РФ, показали, что она может быть рекомендована как вспомогательное средство в комплексном лечении больных метаболическим синдромом (артериальная гипертония, ожирение, нарушение углеводного обмена, дислипидемия) и сахарным диабетом.

Кроме того, было обнаружено, что «легкая» вода улучшает качество жизни при почечно-каменной болезни и различных нарушениях в работе желудочно-кишечного тракта (колиты и гастриты). Учитывая динамику распределение воды в организме, реакции изотопного (H/D и 16O/18O) обмена и результаты, полученные на «легкой» воде, можно ожидать, что наибольший эффект изотопная очистка воды будет оказывать на регуляторные системы организма и обмен веществ.

Эффективность воздействия «легкой» воды зависит от многих параметров - массы тела, количества воды в организме, количества ежедневно потребляемой «легкой» воды и степени ее изотопной чистоты. В табл. 4 приведены результаты расчетов изменения содержания дейтерия в организме при регулярном потреблении «легкой» воды с различным остаточным содержанием дейтерия.

Расчет проведен, исходя из следующих данных: суточное потребление «легкой» воды - 1,0 или 1,5 л; суточный водообмен - 2,5 л; содержание дейтерия в организме соответствует его содержанию в природной воде - примерно 150 ppm; объем воды в организме - 45 л (масса тела приблизительно 75 кг).

Исследованные положительные свойства «легкой» воды позволяют говорить о дальнейших перспективах использования «легкой» воды в медицине, быту и пищевой промышленности. В будущем запланированы эксперименты, в которых «легкую воду» будут потреблять космонавты, поскольку для космических полетов особенно важны противорадиационные свойства «легкой» воды.

Заключение

Легкая вода - это сложная по своей структуре и составу изотопная разновидность природной воды, оказывающая полифизиологическое действие на организм человека - противоопухолевое, радиопротекторное и общее оздоравливающее. Основное воздействие, оказываемое «легкой» водой на организм - это постепенное снижение содержания дейтерия за счет реакций изотопного H-D-обмена в физиологических жидкостях. Анализ полученных результатов позволяет говорить о том, что очистка организма от «тяжелой» воды с помощью «легкой» воды позволяет существенно улучшить работу важнейших жизненных систем организма.

Учитывая роль воды в организме, рассчитанные изотопные эффекты «тяжелой» воды и результаты, полученные на «легкой» воде, можно ожидать, что наибольший эффект может сказаться на регуляторных системах, метаболизме и энергетическом аппарате живой клетки, то есть именно тех клеточных системах, которые используют высокую подвижность протонов (D) и высокую скорость разрыва водородных H+ и D- связей. Кроме этого, «легкая» вода обладает меньшей вязкостью, чем «тяжелая» вода, что позволяет ей легче проникать через клеточные мембраны и тем самым регулировать скорость водообмена в организме. Растворимость неорганических солей в легкой воде несколько выше, чем в тяжелой воде, что дает ей возможность более эффективно выводить продукты метаболизма и вредные солевые примеси из организма. Скорость ферментативных (каталитических) реакций в легкой воде несколько выше, чем в обычной воде. Это позволяет интенсифицировать обменные процессы, что помогает организму быстрее восстанавливаться после больших нагрузок. Таким образом, «легкая» вода позволяет естественным образом, без применения каких-либо фармацевтических средств, существенно повысить обменные процессы организма.

Изучение изотопов кислорода (О 16 , О 17 , О 18) и водорода (Н 1 , Н 2 , Н 3) показало, что в зависимости от их комбинаций может существовать 18 различных типов воды. Особое внимание сейчас привлекла тяжелая или мертвая вода (Н 2 2 О или Д 2 О), которая отличается от обычной воды особыми биологическими свойствами. В ней не прорастают семена, она смертельна для различных организмов. Однако содержание этой воды обычно незначительно и не оказывает вредного воздействия. Тяжелая вода имеет плотность 1,106, максимальная плотность – при + 11,8 0 С, t кип. = 101,42 0 , t плавл. = 3,82.

Изучение изотопов водорода показало, что их природное фракционирование зависит от многих причин. С увеличением возраста вод (седиментационные воды) количество дейтерия увеличивается; тяжелее обычной воды оказалась кристаллизационная, а также вода, содержащаяся в тканях растений и животных. Сверхтяжелая вода (Т 2 О 18 или Н 2 3 О 18) имеет плотность 24, т.е. она на 33% тяжелее обычной воды. Удельный вес ее 1,332, t кип. 103-105 0 С, точка плавления льда 8-10 0 , точка наибольшей плотности 18-20 0 С.

Некоторые исследователи (А.С. Уклонский и др.) считают, что кислород О 16 характерен для атмосферной воды, воды на поверхности Земли и подземных вод, питаемых атмосферными осадками; О 17 –для океанов, а О 18 – для глубинных вод литосферы. Вполне возможно, что непостоянство изотопного состава воды наряду со структурой является одной из причин проявления свойственных воде аномалий.

14.4 Физические свойства воды

К главнейшим физическим свойствам природных вод, которые обычно определяются при гидрогеологических исследованиях, относятся: температура, цвет, прозрачность, вкус, запах, удельный вес.

Температура.

Температура подземных вод колеблется в широких пределах: от минусовой в области многолетней мерзлоты (-13,5 0 С), до температуры перегретых паров (>120 0 С) в районах молодой вулканической деятельности и на больших глубинах. Температура вод определенным образом влияет на химический состав. Повышение температуры увеличивает скорость движения молекул в растворе и скорость течения большинства физико-химических реакций (правило Оствальда). Определение температуры воды производят различными термометрами, применяются так называемые родниковые термометры (ленивые), а также максимальные и минимальные. Более чувствительными и точными являются электрические термометры и электронные датчики.

Прозрачность.

Прозрачность воды зависит от количества в ней взвешенных частиц. Качественно ее определяют в пробирке, в которую налито 10мл воды. Глядя сверху, определяют степень прозрачности воды по номенклатуре: прозрачная, слабоопалесцирующая, опалесцирующая, слегка мутная, мутная, сильно мутная. Количественное определение прозрачности проводят в приборе,- цилиндре с объемным плоским пришлифованным дном, градуированном по высоте на сантиметры. Прозрачность выражается в сантиметрах высоты столба с точностью до 0,5см. Для определения количества взвешенных частиц пробу воды (0,5-1,0л) взбалтывают и фильтруют через взвешенный тигель с пористым дном или через взвешенный фильтр, затем сушат и взвешивают. В случае изменения прозрачности воды при стоянии дают характеристику выпавшему осадку (нет, незначительный, заметный, большой) и по качеству (кристаллический, хлопьевидный, илистый, песчаный и т.д.) с указанием его цвета.

Цвет.

Цвет воды до некоторой степени характеризует ее качество. Химически чистая вода бесцветна, и только в слое толщиной несколько метров она приобретает голубой цвет. Окраску воде придают механические примеси. Желтоватый цвет характерен для болотных вод, содержащих гуминовые вещества. Иногда вода имеет цвет чая (р.Чая). Вода чернеет за счет образования моносульфида железа в поверхностных условиях, после извлечения ее с глубины.

Качественное определение цвета производят в прозрачной воде, в пробирке, под которую подставляют белую бумагу. Цвет воды характеризуется следующим образом: бесцветная, зеленоватая, желтоватая, бурая и т.д.

Количественное определение производят сравнением исследуемой воды, налитой в цилиндр бесцветного стекла 100мл и высотой 20см, со стандартным платинокобальтовым раствором, налитым в такой же цилиндр, при просмотре на белом фоне.

Вкус.

Вкус воды зависит от состава растворенных в ней веществ. Например, соленый вкус вызывается NaCl, горький – MgSO 4 , ржавый или чернильный – солями железа. Сладковатый вкус имеют воды, богатые органическим веществом.

Для определения вкуса воду подогревают до 30 0 С набирают в рот около 15 мл и держат несколько секунд. Различают: соленый, горький, сладкий и кислый вкус, а также привкус: хлорный, рыбный, металлический и др.

Запах.

Запах воды свидетельствует или о наличии газов биохимического происхождения (H 2 S и др.) или о присутствии гниющих органических веществ.

Нагревают воду в пробирке с пробкой, а затем нюхают, характер запаха: без запаха, сероводородный, болотный, глинистый, плесневелый и т.д. по баллам (от 0 до 5).

Удельный вес (плотность, г/см 3 ).

Зависит от величины минерализации, температуры, газонасыщенности и др.). Он определяется: ориентировочно – ареометром, точно – пикнометром, при определенной температуре.